Eigenvalues and Eigenvectors

Philipp Warode

September 30, 2019

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

- An eigenvector is a vector whose direction is not changed under A

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
A v=\lambda v
$$

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
A v-\lambda v=0
$$

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
\left(A-\lambda I_{n}\right) v=0
$$

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
\left(A-\lambda I_{n}\right) v=0
$$

- More than trivial solution $v=0$ if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$

Eigenvectors

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
\left(A-\lambda I_{n}\right) v=0
$$

- More than trivial solution $v=0$ if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
- $P_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
is called the characteristic polynomial of A

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
\left(A-\lambda I_{n}\right) v=0
$$

- More than trivial solution $v=0$ if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
- $P_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
is called the characteristic polynomial of A
- The (complex) roots of $P_{A}(\lambda)$ are the eigenvalues of A

Definition

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^{n}$ eigenvector if

$$
A v=\lambda v
$$

for some eigenvalue $\lambda \in \mathbb{R}$.

■ We want to solve

$$
\left(A-\lambda I_{n}\right) v=0
$$

- More than trivial solution $v=0$ if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$
- $P_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
is called the characteristic polynomial of A
- The (complex) roots of $P_{A}(\lambda)$ are the eigenvalues of A

■ The eigenvectors are the solutions v of $\left(A-\lambda I_{n}\right) v=0$

1 Compute $P_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
2 Compute the roots λ_{i} of $P_{A}(\lambda)$
3 For every λ_{i} solve $\left(A-\lambda_{i} I_{n}\right) v=0$

1 Compute $P_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{n}\right)$
2 Compute the roots λ_{i} of $P_{A}(\lambda)$
3 For every λ_{i} solve $\left(A-\lambda_{i} I_{n}\right) v=0$
Notes:

- $P_{A}(\lambda)=0$ has always n (possibly complex) solutions
- $\mu_{A}(\lambda)$ denotes the multiplicity of the root λ in P_{A} and is called algebraic multiplicity
- $\gamma_{A}(\lambda)$ denotes the number of linear independent eigenvectors for the eigenvalue λ and is called geometric multiplicity
$\square 1 \leq \gamma_{A}(\lambda) \leq \mu_{A}(\lambda) \leq n$

Connection between Eigenvalues, Trace and Determinant

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A.

Connection between Eigenvalues, Trace and Determinant

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A.
$\square \operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A.

- $\operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$
- The sum of all diagonal elements

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i}
$$

is called trace of the matrix A

Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of A.
$\square \operatorname{det}(A)=\prod_{i=1}^{n} \lambda_{i}$

- The sum of all diagonal elements

$$
\operatorname{tr}(A):=\sum_{i=1}^{n} a_{i i}
$$

is called trace of the matrix A

- $\operatorname{tr}(A)=\sum_{i=1}^{n} \lambda_{i}$
- Suppose there are n linear independent eigenvectors v_{1}, \ldots, v_{n}. This is the case if and only if
- $\mu_{A}\left(\lambda_{i}\right)=\gamma_{A}\left(\lambda_{i}\right)$ for $i=1, \ldots, n$

■ In particular if $\mu_{A}\left(\lambda_{i}\right)=1$ for all $i=1, \ldots, n$ (i.e. all eigenvalues are different)
■ Denote by $V:=\left(\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right)$ the matrix of all eigenvectors and by $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ the diagonal matrix of all eigenvalues

- Then

$$
A=V D V^{-1}
$$

