Eigenvalues and Eigenvectors

Philipp Warode

September 30, 2019

athematics Preparatory Course 2019 - Philipp Warode

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

An eigenvector is a vector whose direction is not changed under A

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

$$Av = \lambda v$$

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

$$Av - \lambda v = 0$$

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

$$(A - \lambda I_n)v = 0$$

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

We want to solve

$$(A-\lambda I_n)v=0$$

• More than trivial solution v = 0 if $det(A - \lambda I_n) = 0$

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

We want to solve

$$(A-\lambda I_n)v=0$$

• More than trivial solution v = 0 if $det(A - \lambda I_n) = 0$

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

We want to solve

$$(A - \lambda I_n)v = 0$$

• More than trivial solution v = 0 if $det(A - \lambda I_n) = 0$

• The (complex) roots of $P_A(\lambda)$ are the **eigenvalues** of *A*

Given a quadratic matrix $A \in \mathbb{R}^{n \times n}$ we call a vector $0 \neq v \in \mathbb{R}^n$ eigenvector if

$$Av = \lambda v$$

for some **eigenvalue** $\lambda \in \mathbb{R}$.

$$(A - \lambda I_n)v = 0$$

- More than trivial solution v = 0 if $det(A \lambda I_n) = 0$
- $P_A(\lambda) = \det(A \lambda I_n)$ is called the characteristic polynomial of A
- The (complex) roots of $P_A(\lambda)$ are the **eigenvalues** of *A*
- The eigenvectors are the solutions v of $(A \lambda I_n)v = 0$

Computation of eigenvalues and eigenvectors

- **1** Compute $P_A(\lambda) = \det(A \lambda I_n)$
- **2** Compute the roots λ_i of $P_A(\lambda)$
- **3** For every λ_i solve $(A \lambda_i I_n)v = 0$

Computation of eigenvalues and eigenvectors

- **1** Compute $P_A(\lambda) = \det(A \lambda I_n)$
- **2** Compute the roots λ_i of $P_A(\lambda)$
- **3** For every λ_i solve $(A \lambda_i I_n)v = 0$

Notes:

- $P_A(\lambda) = 0$ has always *n* (possibly complex) solutions
- μ_A(λ) denotes the multiplicity of the root λ in P_A and is called algebraic multiplicity
- $\gamma_A(\lambda)$ denotes the number of *linear independent* eigenvectors for the eigenvalue λ and is called **geometric multiplicity**

•
$$1 \leq \gamma_A(\lambda) \leq \mu_A(\lambda) \leq n$$

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *A*.

Connection between Eigenvalues, Trace and Determinant

Let
$$\lambda_1, \dots, \lambda_n$$
 be the eigenvalues of A .
• $\det(A) = \prod_{i=1}^n \lambda_i$

(**8**) |

Connection between Eigenvalues, Trace and Determinant

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *A*.

• $\det(A) = \prod_{i=1}^n \lambda_i$

The sum of all diagonal elements

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}$$

is called trace of the matrix A

Connection between Eigenvalues, Trace and Determinant

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of *A*.

• $\det(A) = \prod_{i=1}^n \lambda_i$

The sum of all diagonal elements

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}$$

is called trace of the matrix A

•
$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i$$

Diagonalization

■ Suppose there are *n* linear independent eigenvectors *v*₁,..., *v*_n. This is the case if and only if

•
$$\mu_A(\lambda_i) = \gamma_A(\lambda_i)$$
 for $i = 1, ..., n$

- In particular if μ_A(λ_i) = 1 for all i = 1,..., n (i.e. all eigenvalues are different)
- Denote by V := (v₁ ··· v_n) the matrix of all eigenvectors and by D = diag(λ₁, ··· , λ_n) the diagonal matrix of all eigenvalues

Then

 $A = VDV^{-1}$